中国科学院大连化学物理研究所 优秀博士后奖励基金申请表

研究组: ____DNL0302组____

学科专业: ____化学工程____

合作导师: 程谟杰/徐杰___

填表日期: 2016年11月1日

中国科学院大连化学物理研究所制

姓	名 名		贾秀全	性	别	男	
出生日期		1989. 09. 29		民	族	汉	
学历/学位		博士		专业技	术职务		
毕业院校		中科院大连化学物理研 究所		专	业	有机体	七学
(拟)入站时		2016年10月		入站性质		√□统招统分	□在职人员
	间						
E	E-Mail jiaxi		uquan@dicp.ac.cn	联系电话		13604099045	
	起止年	月	所在单位	立/专业		所获等	学位
学	2006. 9-2010. 7		郑州大学/化学		学士		
习简	2010. 9-2	016. 9	中科院大连化学物			博士	
历							
エ	起止年月		所在单位			职务	
作							
经 历							
	博士论文	主论文题目 生物基呋喃类含氮化合物				L 化氨氧化合成研	开究
	指导教师	i姓名		徐			

用催化方法将生物质资源高效转化为含氮化合物等高附加值化学品,缓解或补充化石资源的短缺,具有重要科学意义和应用价值。本论文以生物基呋喃类平台化合物5-羟甲基糠醛、糠醛等为原料,建立了呋喃类化合物催化氨氧化制备呋喃类含氮化合物新方法;通过催化氨氧化-Pinner加成串联反应过程的研究,设计出兼具低温氨氧化和 Pinner加成相匹配的碱性高效催化体系,实现了呋喃类生物基含氮化合物的选择性合成。取得了如下主要成果:

论文研究了 $Cu(NO_3)_2$ 在 $VOSO_4$ 催化选择氧化 5-羟甲基糠醛制备 2,5-二甲酰基呋喃过程中的促进作用。研究发现, $Cu(NO_3)_2$ 促进 V^V/V^{IV} 氧化还原循环是通过原位分解产生的 NO_x 实现的。此外, Cu^{II} 不仅可以有效抑制 5-羟甲基糠醛的 C-C 氧化裂解反应,而且能抑制 2,5-二甲酰基呋喃通过自由基反应生成胡敏素,从而实现 2,5-二甲酰基呋喃的高选择性。

论文首次报道了催化氨氧化合成 2,5-呋喃二甲亚胺酸甲酯的新方法; 锰氧八面体分子筛 OMS-2 催化剂,在温和条件下,实现了催化 5-羟甲基糠醛氨氧化-Pinner 加成串联反应,并高效催化合成 2,5-呋喃二甲亚胺酸甲酯。反应动力学研究表明,在氨氧化和加成反应历程中,经历了羟甲基选择氧化、醛与 NH₃ 的缩合、亚胺的氧化脱氢、腈与甲醇的加成等步骤。羟甲基的选择氧化是整个反应的慢步骤。锰氧八面体分子筛 OMS-2 催化剂在反应过程中,促进了羟甲基氧化为醛基、醛基与 NH₃缩合生成亚胺、亚胺氧化生成腈等步骤。通过与氯化铵原位反应,亚胺酸酯被进一步转化为 2,5-二甲脒盐酸盐,分离收率为 71%。

论文研究了双功能锰氧化物催化氨氧化作用;通过相协同催化作用和醛的氨氧化-Pinner 加成,可以高选择性制备亚胺酸酯。双功能锰氧化物 α -MnO₂/ Na_xMnO₂ 具有低温氨氧化活性和碱性,制备过程中的 Na/Mn 摩尔比对其形成起到了关键性作用。串联

反应中的氨氧化步骤发生在具有低温氨氧化活性的 α -MnO₂ 相,而随后原位生成的腈中间产物与甲醇的加成步骤发生在具有碱性的 Na_xMnO_2 相。在温和条件下,两相之间协同作用,实现了芳香醛高效制备亚胺酸酯,收率最高可达到 96%。

1、主持或参与项目情况:

序	项目名称	项目来源	项目金额	起止年度	角色	
号						
1	葡萄糖直接转化制 2,5-二甲酰	国家自然	25 万元	2014/01-	参	
	基呋喃疏水型催化新材料的研	科学基金		2016/12	与	
	究	青年基金				
2	稀硝酸水相转化制 MN 催化剂	企业	200万	2015/08-	参	
	研究		元	2018/07	与	

2、论文发表情况:

入站前期科研情况简介

序	论文题目	期刊名	影响因子	发表年度/卷期/页 码	排序
号				H-7	
1	Catalytic conversion of	Green Chem	8.506	2016/18(4)/974–978	1
	5-hydroxymethylfurfural into				
	2,5-furandiamidine dihydrochloride				
2	Alkali α-MnO ₂ /Na _x MnO ₂ collaboratively	Catal. Sci.	5.287	2016/6/7429-7436	1
	catalyzed ammoxidation-Pinner tandem	Technol.			
	reaction of aldehydes				
3	Promoted role of Cu(NO ₃) ₂ on aerobic	Appl. Catal.	4.012	2014/482/ 231-236	1
	oxidation of 5-hydroxymethylfurfural to	A-Gen.			
	2,5-diformylfuran over VOSO ₄	Turan over VOSO4			
4	Direct conversion of fructose-based	J. Energy	2.322	2013/22(1)/93–97	1
	carbohydrates to 5-ethoxymethylfurfural	Chem.			
	catalyzed by AlCl ₃ ·6H ₂ O/BF ₃ ·(Et) ₂ O in				
	ethanol				
5	A High-performance base-metal approach	ChemCatChem	4.724	2016/DOI:	3
	for the oxidative esterification of			10.1002/cctc.	
	5-hydroxymethylfurfural			201600484R1	
6	Aqueous phase hydrogenation of furfural	RSC Adv.	3.289	2016/6/	3
	to tetrahydrofurfuryl alcohol on alkaline			51221–51228	
	earth metals modified Ni/Al ₂ O ₃				
7	Advances in selective catalytic	Chin. J. Catal.	2.628	2013/34(3)/	4
	transformation of ployols to value-added			492-507	
	chemicals				

٥١	专利情况 : 	T	_	T	
序	专利名称	授权/申请	授权/申请	起始日期	
号			号		
1	一种果糖基生物质催化转化制呋喃衍生物	授权	CN103467	2016-01-20	
	的方法		418B		
2	催化转化 5-羟甲基糠醛制备 2,5-呋喃二酰	授权	CN104277	2016-05-18	
	胺的方法		021A		
3	2,5-二羟甲基呋喃制备2,5-二甲胺基呋喃的	授权	CN104277	2016-04-13	
	方法		017A		
4	2,5-二甲酰基呋喃制备2,5-二甲胺基呋喃的	授权	CN104277	2016-04-13	
	方法		018A		
5	一种生物质基聚酯的制备方法	授权	CN104277	2016-06-15	
			210A		
6	一种催化转化 1,6-己二醇制备己二腈的方	申请	201410164	2014-04-23	
	法		307.5		
7	一种芳香醛催化转化制备亚胺酸酯的方法	申请	201410165	2014-04-23	
			456.3		
8	一种 5-羟甲基糠醛催化转化制备 2,5-二氰	申请	201510160	2015-04-07	
	基呋喃的方法		568.4		
9	一种芳香醛催化转化制备脒的方法	申请	201510160	2015-04-07	
			602.8		
10	一种 2,5-二氨甲基四氢呋喃的制备方法	申请	201610403	2016-06-08	
			479.2		
11	一种 N-甲氧甲基胺类化合物的制备方法	申请	201610408	2016-06-08	
			977.6		
12	一种催化甲醇直接氧化酯化制四甲氧基甲	申请	201610403	2016-06-08	
	烷的方法		704.2		
13	一种催化甲醇转化制氨基甲酸甲酯的方法	申请	201610403	2016-06-08	
7,040,041					
4	获奖情况:				
序	奖励名称	奖励等级	授奖单位	奖励年度	
号					
1	中国科学院大学 "三好学生"	-	中国科学	2015年	
			院大学		
2	辽宁省自然科学学术成果奖	三等	辽宁省科	2015年	
			学技术协		
			会		
3	延长石油优秀博士生奖学金	二等	延长石油	2016年	
			集团		

博士后研究题目:醇(酮)类分子氧催化选择氧化制备有机酸研究

(简述研究计划的可行性、先进性和创新性,理论和现实意义) 研究计划的理论和现实意义

醇、酮官能团的氧化是有机化学中的重要转化反应之一。随着催化氧化技术的发展,以分子氧或双氧水作为氧化剂,使得醇、酮类氧化转化过程更为绿色清洁,并且在工业应用上取得了很大进展。传统的重铬酸钾、高锰酸钾氧化工业过程基本已经被催化分子氧选择氧化过程代替。但是计量硝酸氧化的工业过程依然存在,例如环己醇、环己酮氧化制备己二酸的过程。我国的己二酸生产规模大,市场需求旺盛,2015 年我国己二酸产能超过 180 万吨。此工业过程用浓硝酸作为氧化剂。浓硝酸不仅具有强腐蚀性,而且此工艺会产生大量的 NO_2 、NO、 N_2O 等氮氧化物,每生成 1 吨己二酸就生成 0.25 吨 N_2O 。 N_2O 是一种极强的温室效应气体,同单位比 CO_2 的温室效应要强 310 倍,对臭氧层的破坏极其显著。实现己二酸制备技术的绿色工艺,是具有科学挑战性的工作,具有重要的现实意义和科研价值。

本项目在选择氧化和氨氧化催化剂的设计和反应过程的研究基础上,针对剂量浓硝酸氧化过程面临的环境和安全问题,提出了新的催化氧化思路,以期实现催化分子氧选择氧化,降低硝酸消耗和污染排放。该研究对于硝酸氧化工业技术的转型、实现氧化制备有机酸过程的绿色生产,具有重要的科学意义。

可行性分析

在硝酸氧化反应中,氮氧化物是硝酸氧化醇、酮类官能团的活性物种。氮氧化物的生成过程是硝酸氧化的关键步骤之一,对反应的活性和选择性有直接影响。

博士阶段我们团队研究了氮氧化物在 redox 循环中的作用,实现了高效催化分子氧选择氧化醇制备醛的反应过程。在此基础上,本研究提出了催化分子氧选择氧化法代替计量浓硝酸氧化工艺,实现醇、酮转化制备有机酸的绿色过程。

为实现这一新的催化氧化思路,需要阐明反应选择性与催化剂组成、结构和反应条件的内在联系;通过反应中间体的捕获、鉴定并结合原位、动态表征探索反应机理,为高性能催化剂的设计和研制提供科学依据。具体来讲,采用原位红外、核磁、EPR、GC-MS 等手段进行催化剂活性物种的表征,用原位反应红外表征技术跟踪催化体系在反应过程中的动态变化,以及反应中间产物的生成和转化。根据反应动力学,对催化剂进行评价和改进,设计出高效的分子氧氧化醇、酮制备有机酸的催化体系。

研究计划的先进性和创新性

本项目着眼于传统硝酸氧化工业技术向绿色生产转型的重大需求,立足于研究 团队的优势,选取环己醇、环己酮氧化制备己二酸,以及与此相关的醇、酮类化合 物转化的基础问题,进行系统深入的研究。本计划主要创新点有以下两个方面:

1. 设计高效催化体系,在温和条件下实现分子氧选择氧化醇、酮制备有机酸,避免或减少温室气体 N_2O 的产生,实现环境友好和高原子经济性的催化过程。

2. 通过表征催化体系的活性物种,阐明 redox 循环;结合原位技术研究反应动力学,阐明硝酸分解、氮氧化物催化氧化反应机理,为新型催化剂的设计提供科学指导。

本人承诺:申请表所填内容均真实可靠。对因虚报、伪造等行为引起的后果及法律责任均由本人承担。

本人及字: 年月日